Emergência da divisão de trabalho


Foto retirada do site Formigas.

Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity


Biological organisms are highly complex and are comprised of many different parts that function to ensure the survival and reproduction of the whole. How and why the complexity has increased in the course of evolution is a question of great scientific and philosophical significance. Biologists have identified a number of major transitions in the evolution of complexity including the origin of chromosomes, eukaryotes, sex, multicellular organisms, and social groups in insects. A crucial step in many of these transitions is the division of labor between components of the emerging higher-level evolutionary unit. How the division of labor was achieved in the face of selfishness of lower-level units is controversial. Here I study the emergence of differentiated cell colonies in which one part of the colony's cells (germ) specializes in reproduction and the other part of the colony's cells (soma) specializes in survival. Using a mathematical model I show that complete germ-soma differentiation can be achieved relatively easily and fast (with a million generations) via the evolution of developmental plasticity. My approach is expandable in a number of directions including the emergence of multiple cell types, complex organs, or casts of eusocial insects.

Article
Sergey Gavrilets*


Department of Ecology and Evolutionary Biology, Department of Mathematics, National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, United States of America

Abstract


A crucial step in several major evolutionary transitions is the division of labor between components of the emerging higher-level evolutionary unit. Examples include the separation of germ and soma in simple multicellular organisms, appearance of multiple cell types and organs in more complex organisms, and emergence of casts in eusocial insects. How the division of labor was achieved in the face of selfishness of lower-level units is controversial. I present a simple mathematical model describing the evolutionary emergence of the division of labor via developmental plasticity starting with a colony of undifferentiated cells and ending with completely differentiated multicellular organisms. I explore how the plausibility and the dynamics of the division of labor depend on its fitness advantage, mutation rate, costs of developmental plasticity, and the colony size. The model shows that the transition to differentiated multicellularity, which has happened many times in the history of life, can be achieved relatively easily. My approach is expandable in a number of directions including the emergence of multiple cell types, complex organs, or casts of eusocial insects.

Author Summary


Biological organisms are highly complex and are comprised of many different parts that function to ensure the survival and reproduction of the whole. How and why the complexity has increased in the course of evolution is a question of great scientific and philosophical significance. Biologists have identified a number of major transitions in the evolution of complexity including the origin of chromosomes, eukaryotes, sex, multicellular organisms, and social groups in insects. A crucial step in many of these transitions is the division of labor between components of the emerging higher-level evolutionary unit. How the division of labor was achieved in the face of selfishness of lower-level units is controversial. Here I study the emergence of differentiated cell colonies in which one part of the colony's cells (germ) specializes in reproduction and the other part of the colony's cells (soma) specializes in survival. Using a mathematical model I show that complete germ-soma differentiation can be achieved relatively easily and fast (with a million generations) via the evolution of developmental plasticity. My approach is expandable in a number of directions including the emergence of multiple cell types, complex organs, or casts of eusocial insects.


Citation: Gavrilets S (2010) Rapid Transition towards the Division of Labor via Evolution of Developmental Plasticity. PLoS Comput Biol 6(6): e1000805. doi:10.1371/journal.pcbi.1000805

Editor: Carl T. Bergstrom,
Received: January 10, 2010; Accepted: May 5, 2010; Published: June 10, 2010

Comentários

Postagens mais visitadas deste blog

O SEMCIÊNCIA mudou de casa

Aborto: um passo por vez

Wormholes