Ocorreu um erro neste gadget

sábado, novembro 14, 2009

Artigo para Ariadne ler

The Evolutionary Dynamics of a Rapidly Mutating Virus within and between Hosts: The Case of Hepatitis C Virus

Fabio Luciani1#*, Samuel Alizon2#*

1 Centre for Infection and Inflammation Research (CIIR), School of Medical Sciences, University of New South Wales, Sydney, Australia, 2 Institut für Integrative Biologie, ETH, Zürich, Switzerland

Abstract Top

Many pathogens associated with chronic infections evolve so rapidly that strains found late in an infection have little in common with the initial strain. This raises questions at different levels of analysis because rapid within-host evolution affects the course of an infection, but it can also affect the possibility for natural selection to act at the between-host level. We present a nested approach that incorporates within-host evolutionary dynamics of a rapidly mutating virus (hepatitis C virus) targeted by a cellular cross-reactive immune response, into an epidemiological perspective. The viral trait we follow is the replication rate of the strain initiating the infection. We find that, even for rapidly evolving viruses, the replication rate of the initial strain has a strong effect on the fitness of an infection. Moreover, infections caused by slowly replicating viruses have the highest infection fitness (i.e., lead to more secondary infections), but strains with higher replication rates tend to dominate within a host in the long-term. We also study the effect of cross-reactive immunity and viral mutation rate on infection life history traits. For instance, because of the stochastic nature of our approach, we can identify factors affecting the outcome of the infection (acute or chronic infections). Finally, we show that anti-viral treatments modify the value of the optimal initial replication rate and that the timing of the treatment administration can have public health consequences due to within-host evolution. Our results support the idea that natural selection can act on the replication rate of rapidly evolving viruses at the between-host level. It also provides a mechanistic description of within-host constraints, such as cross-reactive immunity, and shows how these constraints affect the infection fitness. This model raises questions that can be tested experimentally and underlines the necessity to consider the evolution of quantitative traits to understand the outcome and the fitness of an infection.

Author Summary Top

Rapidly mutating viruses, such as hepatitis C virus, can escape host immunity by generating new strains that avoid the immune system. Existing data support the idea that such within-host evolution affects the outcome of the infection. Few theoretical models address this question and most follow viral diversity or qualitative traits, such as drug resistance. Here, we study the evolution of two virus quantitative traits—the replication rate and the ability to be recognised by the immune response—during an infection. We develop an epidemiological framework where transmission events are driven by within-host dynamics. We find that the replication rate of the virus that initially infects the host has a strong influence on the epidemiological success of the disease. Furthermore, we show that the cross-reactive immune response is key to determining the outcome of the infection (acute or chronic). Finally, we show that the timing of the start of an anti-viral treatment has a strong effect on viral evolution, which impacts the efficiency of the treatment. Our analysis suggests a new mechanism to explain infection outcomes and proposes testable predictions that can drive future experimental approaches.

Nenhum comentário: